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ABSTRACT

Applied to two important classes of linear complementarity problems

defined by an n x n matrix, the parametric principal pivoting algorithm,

using a suitably chosen (and easily computable) parametric vector, terminates

with a desired solution after at most n pivot operations. Since each pivot

can be performed using at most 0(Az) arithmetic operations, the total

computational complexity of the algorithm for solving these linear
cm M

complementarity problems is no more than 0(0). In one of the two classes of

problems being studied, the complexity is 0() because the matrix involved

is 5-diagonal which allows each pivot to be performed in linear time. Some

discussion in connection with Lemke's well-known almost complementary pivoting

algorithm is also addressed.

AMS (MOS) Subject Classification: 90C20, 90C33

Key Words: Linear complementarity, parametric principal pivoting,
efficient algorithm, polynomially bounded, concave
regression, hidden Z, diagonally dominant

Work Unit Number 5 - Optimization and Large Scale Systems

*School of Management and Administration, The University of Texas at Dallas,
Box 688, Richardson, TX 75080, U.S.A.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



SIGNIFICANCE AND EXPLATION

Many well-known pivoting methods for solving the linear complementarity

problem have been shown to exhibit an exponential computational complexity.

In this paper, we identify two classes of linear complementarity problems

which can be solved by a numerically efficient as well as polynomially bounded

pivoting algorithm. One of these classes of problems arises from the concave

regression problem which has practical applications in statistics.
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LINEAR C(OPLEMENTARITY PROBLEMS SOLVABLE BY AN EwVFCZEvT
POLYNOI4IALLY BOUNDED PIVOTING ALGORITHE

Jong-Shi Pang'

1. INTRODUCTION .

It is known that the general linear complementarity problem defined by an arbitrary

matrix is NP-complete (51. Hence, it is unlikely that there will be a polynomially bounded

algorithm for solving an arbitrary linear complementarity problem. With respect to several

most notable pivoting methods, examples of problems have been constructed which show that

these methods can require an exponential number of pivots [2, 12, 22]. These cited studies

are all theoretical in nature and provide the worst-case analysis of the linear

complementarity problem. From a practical point of view, it is more desirable to be able

to identify classes of problems (with applications) which are solvable by an algorithm that

is both numerically efficient as well as polynomially bounded. Except for the trivial ones

(e.g. those defined by triangular matrices) the class of linear compleentarity problems

with a Z-matrix is perhaps the best known member belonging to such a category 14, 301.

(Another related class can be found in (251.) These latter complementarity problems have

applications in the numerical solution of free boundary value problems, optimal stopping,

isotonic regression and others.

In this paper, we identify two classes of linear complementarity problems and show

that with a suitably chosen (and easily computable) parametric vector, the parametric

principal pivoting algorithm [6, 27] will compute a solution after at most n pivot

iterations where n is the order of the matrix defining the complementarity problems. One

such class arises from the concave regression problem which has practical applications in

statistical regression analysis. The latter problem was first formulated by Hildreth 113]

for the estimation of marginal productiv
4
ty curves and is concerned, in general, with

finding a least-square estimate of a certain functional relationship between some dependent
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and independent variables which is known to be concave. recent references on the concave

regression problem include (11, 14, 31). The resulting class of linear oomplementarity

problems is defined by a 5-diagonal symmetric positive definite but non-Z matrix. The

5-diagonal structure greatly simplifies the practical implementation of the parametric

principal pivoting algorithm which results in an efficient 0(n 2
) method for solving the

concave regression problem.

The primary reason why a great deal of emphasis is placed on the concave regression

problem is because it is this practical problem which has challenged us to develop an

algorithm that is both numerically efficient and polynomially bounded and has subsequently

led us into this entire study. The desire to derive such a fast algorithm is in turn

motivated by a close relative of the concave regression problem, namely, the isotonic

regression problem. This latter problem has been well studied in statistics [1] and a

linear-time algorithm has been developed (17, 31]. From a complementarity point of view,

the isotonic regression problem can be formulated as a linear complementarity problem with

a tridiagonal Stieltjes matrix and thus its solution by a linear-time algorithm is to be

expected [4, 9, 101. On the other hand, as we shall see, the matrix defining the linear

complementarity problem arising from the concave regression problem is not Z.

The other class of linear complementarity problems identified in this paper consists

of those defined by a matrix whose transpose is hidden MLnkoweki. A hidden MinkowskL

matrix is a P-matrix which is hidden Z. The class of hidden Z-matrices was introduced by

MangasarLan (20] in connection with the study of solving linear complementarity problems as

linear programs (see also [8]). The name Ohidden Z" was coined because of the relation to

a hidden LeontLef matrix [23]. Specifically, a matrix N is hidden Z if there exist

Z-matrices X and Y such that the two conditions below are satisfied

MX = Y(1)

rTx + sTY > 0 for some r,s = 0 • (2)

Obviously, a Z-matrix is hidden Z. Many basic properties of a hidden Linkowski matrix

have been obtained in (24]. In particular, it is known that an H-matrix with positive

diagonals is hidden Minkowski. (A matrix N is H if its comparison matrix I defined
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ij= - I~ijI if i j

I1i4l if i j

in P.) lxamples of U-matrices include the column (or row) strictly diagonally dominant

matrices and of course the Minkowski matrices. Other examples of hidden Minkowski matrices

can be found in (241. Since the transpose of an H-atrix is obviously an H-matrix, it

follows from our analysis that a linear complementarity problem defined by an H-matrix with

positive diagonals can be solved by an effective O(n 3 ) pivoting algorithm. in

particular, so can a problem with a strictly diagonally dominant matrix having positive

diagonal entries.

Although Nangasarian [20] has shown that a linear complementarity problem with a

hidden 2-matrix can be solved by a linear program (using an easily computable objective

function), the only polynonially bounded algorithm for solving a general linear program

(161 is known to be numerically inefficient [3). The parametric principal pivoting

algorithm, on the other hand, has been shown to exhibit good numerical performance even on

problems of fairly large size (28, 291.

The question of efficiently identifying whether an arbitrary matrix is hidden Z

reamins unsolved. (Basically, the difficulty has to do with the nonlinearity of the second

defining condition (2).) However, that of checking if a matrix is hidden Kinkowski can be

effectively answered by solving two linear programs [263. The procedure described in the

cited reference will find the two Z-matrices X and Y satisfying (1) and (2) if N is

indeed hidden Ninkowvki. Por certain subclasses (like the $-matrices with positive

diagonals), the matrices X and Y can be obtained easily without solving any linear

program (see [8, 20, 241 for more such subclasses). Related to this discussion is the open

question of whether the transpose of a hidden Z-matrix is hidden Z.

The organization of the remainder of this paper is as follows. In the next section,

we give a quick review of the parametric principal pivoting algorithm for solving a linear

complementarity problem with an n x n P-matrix and state a general (sufficient) condition

under which the algorithm will terminate with the desired solution after at mst n
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pivots. lb also discuss an efficient implementation of the algorithm when the condition is

satisfied and establish its O(n 3 ) computational complexity. Section 3 deals with the

concave regression problem. We show how this practical problem can be formulated as a

special linear complementarity problem and demonstrate that the condition guaranteeing the

linear termination of the parametric principal pivoting algorithm is indeed satisfied by

this special problem. In Section 4, we study a general linear compleentarity problem

defined by a P-matrix whose transpose is hidden Z and show that the same sufficient

condition on the parametric principal pivoting algorithm is also satisfied by this class of

problems. Finally, in the fifth and last section, we extend our discussion to Lemke's

almost complementary pivoting algorithm 118, 193 and show that the same condition given in

Section I is also sufficient for Lemke's method to terminate in at most n + I pivots with

a desired solution when applied to a general linear complementarity problem with an

n x n nondegenerate matrix.

-4-



2. TH P&AMR'RIC PRINCIPAL PIVOTING ALGORITHM

We find it useful to quickly review the parametric principal pivoting algorithm in

terms of its practical implementation [6, 271. Given the linear complemntarity problem

(LCP)

y - q + Mx 1 O, x a O. yTx - 0 (3)

where the matrix K is P, we augment it by a parametric vector p and consider the

parametric iCP

y -q +p + MR aO, X aO, YTXO.

where 6 is a parameter to be driven to zero. The vector p is chosen positive. Assume

that several (principal) pivots have been performed. Let L(K) denote the currently basic

(nonbasic) x-variables. (Initially, L - +.) with respect to these index sets, the

canonical tableau may be written in the form

S L L -

xL qL p KML -ILOLK

X qT pK KRLL '"/LL)

where (qjL k) is the (unique) solution to the system of linear equations

KL~Lk - -q~L

and

=(qx.pK) + rj *'k

and where (K41LL) denotes the Schur complement of KL in M:

("fw) - HMK - NM LL"•

(See 171 for various properties of the Schur coplement.)

To determine the next pivot, the ratio test is performeds

If p 1 0 or < 0, then thA desired solution to the original LCP(3) is obtained as

x* - (jL,0) .

Otherwise, let k be a maximizing index in (4). Update the index set L (and its

II5-



complement K) by the rule:

Lnew = f Lold\ (k) if k e Lold

LOldU(k) if k # Loid

This completes one (pivot) iteration of the algorithm.

Now suppose that the vector p is chosen so that

S.pL > 0 for all L • (5)

Then the maximizing index k can never occur in Lbld. Thus the cardinality of the set

L is increasing by one at each pivot. Consequently, unless the algorithm has already

terminated (with a desired solution), it will continue until the complement K reaches

empty, at which point, we have = -N-1 p 4 0 and the algorithm terminates. We have

therefore proved

Theorem 1. Let N be a P-matrix of order n. If there exists a vector p > 0 such that

condition (5) holds, then the parametric principal pivoting algorithm, using p as the

parametric vector, will compute a solution to the ICP(3) in at most n pivots.

Remarks. (i) No nondegeneracy assumption is needed in Theorem 1.

(ii) Underlying the proof of Theorem I is the key idea that once an x-variable

becomes basic, it will stay basic until termination. Loosely stated, Theorem I asserts

that all the basic x-variables can be identified in no more than n pivot stepa. Of

course, once those variables are determined, the desired solution to (3) is readily

obtained.

Based on the idea pointed out in Remark (ii) above, it is possible to simplify the

implementation of the parametric principal pivoting algorithm. Indeed, since a basic

x-variable can not become nonbasic again, we need to keep track of the nonbasic

components (qx,p) only and restrict the ratio comparisons (4) to such components.

Moreover, exploiting the fact that the index set K decreases by one element k (the

maximizing index) at each pivot, we may update these nonbasic components by the following

recursive formula which does not require the knowledge of the basic components:

(q, l = (qK.,pK,.d + (MK, - MK LMLklqkPk (6i1)

where K' - K\(k} and RLk is the solu-ion to the system -f linear equations
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NZINU" (611)

(The formulas (6) and (61) are easy to verify.)

Sumarizing the discussion, we give below a step-by-step implementation of the

parametric principal pivoting algorithm for solving the LCP(3), assuming that a vector p

has been chosen as specified in Theorem 1.

Step 0. (Initialization) Set L - a and K - {1,...,n). Set = p and - q.

Step 1. (Termination Test) Determine the critical value

9 - Maxf-iij/l t i e K and 0i >  . (4)1

If P = 0 or 6 . 0, go to Step 3. Otherwise, let k e K be a maximizing index.

Step 2. (Update of the Nonbasic Components) If X - (k), set K - * and L -

go to Step 3. Otherwise, solve the system of linear equations (6ii) and compute (61).

Set R - K' and L - LU {k). Go to Step I.

Step 3. (Output of Solution) Solve the system of linear equations for xt:

MLL- " L .

The vector x* - (xt,0) is the unique solution to the LCP (3). Stop

The success of the above algorithm clearly hinges on the ability to find the crucial

vector p. Continuing to assume that it is available, we analyze the complexity of the

algorithm. Step I requires 0(n) comparisons. By using an adaptive matrix factorization

(such as LU) scheme, the system (611) can be solved in 0(n 2 ) time, so can the one in

Step 3. The computations in (6) can be achieved in the same amount of time. Since the

algorithm will terminate after at most n passes through Steps 1 and 2 and since the

storage requirement is obviously no more than 0(n 2 ), the overall complexity becomes

0(n 3 ). If the matrix N is banded with small width (such as the one to be analyzed in the

next section), both Steps 2 and 3 can be carried out in linear time (even without any

adaptive procedure). In this cam, the complexity reduces to 0(n2 ).

Rsemarks. (i) The above complexity analysis assumes that the systems of linear equations

(6ii) are solved by a direct method (such as Gaussian elimination). For problems of very

large size (say when n is a few thousands), it may be more advantageous to solve such
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systems by iterative methods (like SOR). In this case, the analysis would not be

applicable because of the infinite nature of the iterative schemes.

(ii) The implementation given above ignores the basic components (qL,j) until

termination actually occurs. If for some reason they are needed, they can be obtained

recursively from the following formulas:

(iLPL)new - (qi,.)old - MLklk)ne

(qk4lnew - -(ikik)old/(Mkk L- Lk)



3. TUB COMCAVE REGRESSION PROBLEM.

In this section, we study the concave regression problem 131] and show that when it is

formulated as the LCP(3), the vector p of all ones will satisfy the required properties

in Theorem 1. Thus, the analysis of Section 2 applies and we obtain an effective 0(n2 )

algorithm for solving the concave regression problem.
ai-",n+2 n+2

Given an integer n 1, data points (a I scalars (C n with ai <
i i-i i i.I + ) w"

Ci - 1,...,n + 1) and weights (w n2 with wi > 0 (i - 1,...,n + 2), the concave

regression problem is to find numbers (u in+2 to
i i-i

n+2 2
minimize I wiCui " a l (7)

i.-

subject to
u i+1 - ui  u i - ui_

< (i = 2,...,n + 1)
i+1 - i .i i- iI

The constraints above express the fact that the consecutive slopes of the line segments
n+2

joining the points {(Q ,u i)}i1 (in the plane) are non-increasing, i.e. the piecewise-

linear curve connecting those n + 2 points is concave.

To write (7) in matrix form, let W be an m x a diagonal matrix with weights

{w )m as the diagonal entries (m = n + 2). Define the positive scalars

i = 1/(4 1+ 1 - ai ) i = 1,...,n + 1

and let

A= [-01 B1 
+  2  2

-0 2 82 + 0 3 -03

-n  n '+ n+ 1  - n+ 1

be the n x m matrix of the concavity constraints in (7). We may now restate problem (7)

as to find a vector u e le to
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minimize I/2 uTwu - uTwa (7)'

subject to

Au 1 0

The Karush-Kuhn-Tucker conditions of (7)' are

0 = -a + u - W-IATx

y = Au a 0, x 1 0, ytx 0

Eliminating the vector u, we obtain the LCP

y = Aa + AW- 
1ATx 0, x 0, yTx 0 (8)

Obviously, if x* solves the above LCP, then the vector

u* = a + W-IATx
*

solves the concave regression problem (7).

It is easy to see that the matrix A has full row rank. Thus the matrix

M = AW-IAT (8)'

defining the LCP(8) is symmetric positive definite. Moreover, M is a 5-diagonal matrix

(i.e. a band matrix of width 5) and its entries have the sign pattern

+ - +-

++ - + -
4. - +. -

4. - +

Thus M is not Z. (We do not know if M is hidden Z or not.)

Theorem 2. Let M be given by (8)'. Then condition (5) holds if p is chosen as the

vector of all ones. Consequently, the conclusion of Theorem 1 applies to the LCP(8).

The proof of Theorem 2 is by induction on the cardinality of the index set L. For

this purpose, we derive some properties of the matrix M defined above.

Since M is completely determined by the scalars (Bi~wi}, we shall say that M is
nfl n 2

of type ((B i:I1,{wi n=1 . We say that a matrix M' is of the same type as M if M'
, , ,n i=1

is defined by some positive scalars f.iin=' and (wii=I  in the same way as M is
i I.= i=1

by 1i1
n+
l n 2by =I and (wii.i . Obviously, if MLL is a principal submatrix of P4 consisting

-10-



of consecutive rows and columns, then MLL if of the same type as N. Indeed, if

L - [j, j + 1,... ,j + k)

then MLL is of type (B10 : +k, I ")+k+
2
).

By the k-th forward (backward) leading principal submatrix of N, we mean the

submatrix consisting of the first (last) k rows and k columns. The following few

lemmas establish certain invariance properties of the Schur complements of leading

principal submtrices in N. hey are all stated in terms of forward leading principal

submatrices. Similar results hold for backward leading principal submatrices. The first

leama says that the Schur complement of Nil in K is of the same type as M. Moreover,

the scalars defining this Schur complement are not much different from those defining N

and can be obtained easily from some simple expressions.

lama 1. The Schur complement (/Mll) is of type

((2 1 0 1 n+l - - n+2
i 2 =3" {V2. w3, (wi i4

where - ,( - + w-1(, + 0 )(-102+ w-1 (0 + 0 2
0 -1 -12 -1 2 -1 2/(W-6 (w- +2  '2(1+
;2  0 /( 2 ( 1  61 w (61 2

- -1 -1 2 w-1 + 02)2)

w3 M 11/(w 3 (w 1 0 1 62)

Proof. This follows from a straightforward computation of (N/N 1 1 ).

Generalizing Leuma 1, we have

Lemma 2. Let Nk denote the k-th forward leading principal submatrix of M. Then the

Schur complment (M/Nk) is of type

k1 i i-k+2 k+1 ,wk+ 2 ' i i-k+3

for some suitable scalars k+l' k+l and k+2

Proof. This can be proved by induction, utilizing Lames I and the fact that

(K/Nk) - (N/fk..)

where R = (M/NI) and "k-1 denotes the (k-1)-st leading principal submatrix of N.

-11-



Lemma 3. let MM be a principal submatrix of M. let Nk be the k-th forward leading

principal submatrix of 
1

LL. Then the Schur complement (MLL/N k ) is a principal submatrix

of aome matrix N' of the same type as M.

Proof. By means of an inductive argument, like the one used in Lemma 2, it suffices to

prove for k = 1. If MLL consists of consecutive rows and columns from M, then "LL

is itself a matrix of the same type as M and thus the conclusion follows from LeMa 1.

On the other hand, if some rows (and columns) in 
M
LL are not consecutive, we may fill in

those missing rows and columns to get a larger principal submatrix NL*L , with L j L'.

Then (MLL/(M,1)j) is a principal submatrix of ( which by lmma I again,

is a matrix of the same type as M.

The following lema is easy to see. It allows us to perform some scaling operation in

the main inductive proof of Theorem 2.

Lea 4. Let N be obtained from the matrix 1 by deleting its second row and second

column and then scaling the first row and the first column by a positive scalar 6 (the

(1,1)-entry is thus scaled by 8 2). Then N is equal to the principal submatrix obtained

from the matrix M' by deleting its second row and second column where N' i- of type

(080 ( n+1 I n+2
1' 2' (L0 = )1- (wii 3 1 -

Remark. We should point out that if we perform the same scaling operation to the matrix

M itself, the resulting matrix will not be of the same type as M.

In [31], it was proved that if the set of data points (a in,, is convex, then the
i i-I

least-square concave fit must be a straight line. This interesting geometric fact has an

important algebraic consequence, namely, that the inverse of the matrix N is

nonnegative. To see this, we translate the geometric statement in the context of the

LCP(8), obtaining the implication:

Aa 0 -> y* = Au* - 0

which is equivalent to

As S 0 -> x - -(AN- IAT)l'Aa & 0

Since the matrix A has full row rank, the above implication is in turn equivalent to

-12-



y 0 -> (AW-IATr'y Y 0

thus x- 1 0.

As a matter of fact, a stronger version of the above conclusion holds.

L 5. Let {± and (w )n+2i be positive scalars. Then a matrix K of
tye {6}:1

, 
,in+2)

type ((0L (V1 iI has a positive inverse.

Notice that 1emma 5 does not follow from the proceeding argument. in what follows, we

give a proof based completely on matrix manipulations. By letting W be the n x n

diagonal matrix of the scalars {w )n+' and

B 0 2 + 0 1  -0 2
" 2  3  2  -03

+ 0 -60
0

n-1 on n-1 
n

-0 n  on n+I

be obtained from A by deleting its first and last columns, it is easy to m that

N _ -IDT + -102 T + -1 .2 T (9)M=D I Iw1  e e+2 n+ len n

where e I and on are the first and last unit vectors in le. The above formula (9)

identifies the matrix N as a simple rank-two update of WIDT. Notice that 3 is an

irreducibly diagonally dominant 8tieltjes matrix. Thus B has a nonnegative inverse, and

so does - 3 - The next result gives an explicit inverse for B which is needed to

prove Lea 5.

Le4ma 6. Let a - n + 2 and 6 i = 
1/(ai+ - ai), i - 1,...,n + 1. Then

-1= 1 (2 a a)(am - 82) (a2 a 8i)(am - '3) . . . (a2 " - )(% a.-,)

a-"1 (*2 " 8I)( am a3 ) (a3 a I)(m a 3) 3 8)(m " (%

(2 a i)(% - M_1) (83 a I)(am a-m-I (af-I - 8I)(8 -% .. j

Proof. This can be verified by directly multiplying out BB-
1 .

-13-



Remark. lomma 6 is believed to have it@ own interest. For example, it provides an

explicit inverse for the matrix

2 [ --1 2 -1

-1 2 -1
-1 2

which occurs very often in the discretization of elliptic partial differential equations.

In order to establish Lemma 5, we first show that a certain entry of k-
1 is

positive.

Le~ma 7. (M- 1
)l,n > 0.

Proof. Applying the Sherman-Morrison-Woodbury formula (15, p. 124] to (9), we obtain

-11 '-T- w.t, m.' 20+1-n-1 n)C 6n)

['2x2 + f I } (q-1BT) -I (l 1/2 Is n+,e) ( : : :,w- 1/ 0 0 w-1'2

where

(e1 ,en) - (BW S )l'(e 1,en).

Define three scalars

m-I -1 2 -1
y - Wk ( k  - a)(0 k), - w (a a ) and a I w k(a k  - I1

kk2 k-2

Then, by Lena 6 and an easy manipulation, we obtain

- T -1 (a2 a)(a - an-)
( ,n I -M n " ( al )2

where G is the 2 x 2 positive definite matrix

[G + wI( -I)a1)
2  

21

Y 0 + wa (a -

-14-



By the Schur deteranantal formula (ae 71), we deduce

S(a 2  a1)(%" 00-1) dot R

'.n (% _ al2 dotG

where R is the 3 x 3 matrix

R.Y o]R= Y G "

Obviously,

det R w W (am - 11)4Y > 0
1m

Thus, (.*1)1, n > 0 as desired.

Proof of Lmma 5. We use induction on n, which is the order of the matrix M. It is

obvious that the assertion is true for n = 1. Suppose that it is true for k < n. Let

N be a matrix of type o -n+1' w -n+2) " We may write

i i-1' i i-i

N a- ( 1 : )

where N is the (n -1)-st backward leading principal submatrLx of K. AccordiLng to Lma

1, the Schur complement (N/M 1 1) is of the same type as M. Thus, the induction

hypothesis implies that ( = (/14 1 1 )- is positive. We have (see (71 e.g.)

1- -aTN

-N a 8N

where 5 - (N/). Since N is positive definite, 8 > 0. Consequently, with the possible

exception of the second to last entries in the first row and first column, M14 is

positive. Similarly, applying the same argument to the partitioning

14 C 
'  b )

b
T  N

nn

where N' is the (n - I)-st forward leading principal submatrix of M, we can deduce

that with the possible exception of (W')l,n and (W')n,1
, 

(these latter two entries
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are equal because N is symmetric) N"1 is positive. by Lemma 7, it thus follow that

has all entries positive. This completes the proof.

we are now ready to prove the main Theorem 2.

Proof of Theorem 2. We use induction on the cardinality of L. The assertion is easily

seen to hold for L consisting of no more than 2 indices. Suppose that the conclusion is

true for all L consisting of no more than k - 1 (k 1 3) indices. Let L be an

arbitrary subset of {1,...,n) with k elements. We may partition the matrix NLL in

the following ways

"a QQ1 W2 2

Q 1-2  N 1- 1  Q 1t 1

Lt-1 N

where each N1  consists of consecutive rows and same columns of N and each Qi is

either identically zero or has all entries equal to zero except for the single one in the

upper right corner which is positive. (In other words, we partition the set L into

disjoint groups CL )!., where indices in each Li are consecutive.) If KU consists

of just one single block N, (i.e. if the indices in L are all consecutive), then
-1

1
LLpL A 0 because MLL in of the same type an M and Lemma 5 applies. So suppose

that N.L consists of more then one such block N1 .

If at least one Qi is identically zero (i.e. if the last index in at least one

group Li differs by three or more from the first index in the immediately following

group Li*i), then the system of linear equations

ML~pL- ~L(10)M~L- PLo

decomposes into two maller subsystemsi therefore the positivity of ;L follows from our

induction hypothesis. go suppose that all QL have exactly one positive entry in the

upper right corner (i.e. suppose that the last index in each group Li is exactly two les

than the first index in the immediately following group Li+l)

-16-



Assume that the first leading block N, is or order W') 1. We nay write

INI  a

a 6

where El is the (k' - 1)-st forward leading principal eubmstrix of N1 . Write

p1  p 1

according to the partitioning of NLL and N1 . Pivoting on 21 in the system (10) yields

the reduced system

OT r a
ST

Q1 N2 Q2  P 2  " P2

(11)

N T
Qt-2 1-1 Q1-1 ,PI-I PI-I

Q1-1 Nt I Ptt P

where - (N1 /9) and 01 is the last column of QI. The scalar -I- aN;1 , is

positive by induction hypothesis. Scaling the first row and first column in the system

(11) by 1/s, we obtain

1r
2 a "r

Q Q2 P2 P2 (12)

Q N T
Q1-2 1t-1 1_-1 PI- pjt-1

Q1-1  N1  pe Pt

By Leima 4, the matrix defining the system (12) is a principal sutmatrix of a matrix of the

same type an M. Thus induction hypothesis implies that r ) 0 and
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Pi > 0 (i - 2,...,A). To show ii 
> 
0, we perform a backward principal pivot on the

second to last blocks in the system (10) obtaining

(1 1 P1
N I p ) pl)(13)

aT r

where i is the Schur complement of

TN2  Q2

Q2 3 3

Q1-2 1I-1 1-1

Q1_1 Ng

in the matrix

T

Q 1 N'1 Q 2 

2 2I

Q 1- 2 N1-1  1-1
Q 1 NIL J

and the scalar is positive by induction hypothesis. By TLA 3. it can be seen that

the matrix defining the system (13) is of the same type as M and thus has a positive

inverse (Lama 5). Therefore j, > 0.

Now suppose that the block N1  consists of just one single entry. If the second

block N2 also consists of one single entry, then pivoting on N, in the system (10)

gives the reduced system

2 °2 P2 " P2

Q 2  N3  Q3 P3

T T

91Q N I j P 1

where P 2 
> 0. Scaling the first row and first colus of the system by 1/p2' we obtain

-IS-
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1- i 1 T~

2 '2 2 P2
p2  p2
1 TQ 2 N3 Q3 p3  P3

P2(14)

QI-2 N1-1 Q-1 t-I PI-1

By Lema 4 again, the matrix defining the above system is a principal submatrix of some

matrix of the same type as M. Thus, the inductive hypothesis implies Pi > 0

(i - 2,...,1). Tb show ;j > 0, perform a principal pivot on the third to last

block Ni(i - 3,...,1) in the system (10) (since both N, and N2 are single-entry

blocks and L has k 1 3 entires, there must be at least one block Ni i 1 3)),

obtaining a 2 x 2 system from which the positivity of P1 follows easily.

Finally, suppose that the second block N2  is of order larger than 1. Then writing

N 2 b
N2 (b T

b '

and applying an argument similar to the one used when NI is of order larger than 1, we

an easily deduce that PL > 0 as desired.

Summarizing, we always have ;L > 0 for any index set L. This completes the proof.

Remark. The reason why the scaling in the systems (12) and (14) is needed is because the

induction hypothesis in applicable only when the right-hand vector in (12) and (14)

consists of all ones.
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4. TiE CASE OF A HIDDEN MINKOVSKI MATRIX.

Returning to the general WP(3), we prove

Theorem 3. Suppose that HT is hidden Minkowski. Let X and Y be two Z-matrices

satisfying

M
T
X -Y (15L)

rTX + sTY > 0 for some vectors r,s 1 0 .(sii)

Then condition (5) holds for any vector p > 0 satisfying XTp > 0. Consequently, the

conclusion of Theorem I applies to the LCP(3).

Before proving Theorm 3, we compare it with the results obtained in E8,201 concerning

the solvability of an LCP with a hidden Z-matrix an a linear program. Let MX,Y and p

be an given in Theorem 3. Then the (unique) solution to the LCP

y - q + MTx 1 0, x 1 0 andyx0 (16)

can be obtained by solving the LP

minimize pTx

subject to q + MTx 1 0 and x 1 0

Theorem 3 implies that the same vector p can be used to start the parametric principal

pivoting algorithm for solving the ICP

y - q + Mx A 0, x 1 0 and yTx - 0 (3)

and the algorithm will terminate after at most n pivots. Notice that (3) is defined by

the matrix M whereas (16) is by its transpose MT.

An example of a vector p > 0 satisfying XTp > 0 is given by

p - r + Ms (17)

where r and s satisfy (15ii), see [8). More generally, the vector p computed by

solving the system of linear equations

X
T

p= (17)'

for any positive right-hand vector e will have the same required properties. Indeed, the

fact that MT is P implies that XT is itself Minkowski (see toome S below). Hence the

solution to (17)' is p - X-Te > 0. In any case, p can be obtained in at most 0(n 3 )
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time. Consequently, by the analysis of Section 2, the parametric principal pivoting

algorithm will solve the LCP(3) in 0(n 3 ) time.

To prove Theorem 3, we quote the lma below w'ich sumarizes two useful properties of

a hidden Minkowski matrix. A proof of the lema can be found in [24].

Lems& 8. ret M, X and Y be as given in Theorem 3. Then for any index set L,

Mi) M X/) - (W/XMK)

where X is the complement of L and

XK KK

(ii) The matrix W is Minkowski. (In particular, so are X and Y.)

Proof of Theorem 3. We first remark that if XTp > 0, then for any complementary index

sets L and K,

(XT/(XT)M)PL > 0

From Liema 8(1), we obtain

(M
T
)LL - (W/XX)(X/XKK)-

which implies

(M) 
- 1 - (W/X )I-T(X/XM)T

Thus, it follows that

(MLL)-'PL - (W/XrIM)-(X/Xll)TpL a 0

because (W/XK) is Minkowski (implied by Lemma 8(it)) and thus has a nonnegative inverse,

and (X/x)T _ (xT/(xT)KK). This completes the proof.

The preceeding discussion shows that in neneral the parametric vector p can be

calculated from either (17) or (17)1. In the Corollary below, we identify two classes of

matrices M for which the vector p is available trivially.

Corollary 1. i) If M - yT + abT where Y is a Minkowski matrix and a and b are

positive vectors, then p f a satisfies condition (5).

(ii) If M has positive diagonal entries and is strictly row diagonally dominant,

i.e.,

-21-
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ii > I IM ijl all i
j* i

then the vector p = (pi) defined by

P ii +  N Mij all i

j:M..<0

satisfies condition (5).

Proof. It is known that a matrix M satisfying either (i) or (ii) is hidden Minkowaki

(see [8] e.g.). It is also obvious that the vector p in either case is positive. Thus

it remains to verify that XTp > 0 where X is as given in Theorem 3. In case Mi), we

have

MT - Y(I + y-IbaT)

Thus

XT = (I + Y-lbaT)-T 
= I- ab y

1 + bTy-Ta

Hence, it follows that

xTa = a/(l + bTy-Ta) > 0

In case (ii), we may write (see (8])

M - 2A - B

where B = 4 is the comparison matrix of M and A (M + A)/2. It is easy to show that

the required XT is given by (see [8])

XT - BA- '

With the vector p defined as specified, we easily deduce that A-Ip is the vector of all

ones. Thus xTp > 0 because M is strictly row diagonally dominant.

Remark. The matrix M arising from the concave regression problem (cf. (8)') provides

another example for which the parametric vector p is available trivially.

If M is an H-matrix with positive diagonals and if d is a positive vector such

that Ad > 0, then the same proof of case (ii).in the above Corollary shows that the

vector p = (M + M)d/2 satisfies condition (5).
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5. OQ U MI'S METHOD.

It is rather evident that the parametric principal pivoting algorithm presented in

Section 2 is intimately related to Leake's well-known almost complementary pivoting

algorithm (18, 19]. Indeed, in (21], McCammon pointed out that Lemks's method can be

implemented as a parametric pivot scheme in which the artificial variable is treated as a

parameter (see also (191). McCammon also discussed the relationship between this

parametric version of Lemke's method and principal pivoting. As a result of such a

connection, it is natural to ask whether the existence of a positive vector p satisfying

condition (5) will imply a linear termination for Lemke's method applied to a LCP with a

matrix which is not necessarily P. The result below gives an affirmative answer to this

question. Recall that a matrix M is nondegenerate if all its principal submatrices are

nonsingular.

Theorem 4. Let M be an n x n nondegenerate matrix. Suppose that there is a positive

vector p satisfying condition (5). Then Lemke's almost complementary pivoting algorithm

using p as the artificial vector, will terminate with a desired solution to the LCP(3)

after at most n + I pivots.

Proof. Consider a current iteration (after the first) of Leake's method. We have

available an index set L corresponding to the basic x-variables and an index t # L such

that (yt,xt) is the nonbasic pair. The canonical tableau may be written as (only the key

entries are displayed)

YL Yt x t  x

x L M LL PL) lM~

- tL Pt Mtt

Y Yj

where J is the complement of (t) U L.

Assume that yt has just become nonbasic so that xt is the incoming variable. We

claim that condition (5) implies that the next pivot will not occur in an xL-row. Indeed,

after an easy computation, it is easy to verify that the (XLxt)-entry in the above

-23-



tableau is given more explicitly by

-1

tt MtLLMLt -1 -1tt MtL[,L MLLPL -MLLt (18)

pt - MtLM_ 1 L LPtP

(The fact that K is nondegenerate (implying MLL exists) and the nonsingularity of the

basis matrix

MIX~ PL)
MtL t

guarantee the nonvanishing of the denominator. The nonsingularity of the basis B is in

turn guaranteed by the pivot operations.) By (5), the vector

(PL) MLL M Lt) lP L) o(_)- (Mt M 0
t tL Mtt t

It is easy to show that

= MLPL - Pt -tL LL M t

tt tLLLLt

t= (Pt - MLPL - MtLMIX.Lt "

(Again, the nondegeneracy of M implies that the denominator in the above two expressions

is nonzero.) Thus, it follows from (18) that the (xL,xt)-entry in tableau (17) is given by

the vector k/Pt which is nonnegative. Consequently, the increase of xt will not

decrease the values of the already-basic xL-variables. Therefore, the next pivot will

occur either in the 6-row (in which case a solution to the LCP(3) is obtained) or in a

yj-row (in which case the index set L increases by one element and the argument just

given repeats itself).

Next, we show that the (e,xt)-entry in tableau (17) is negative. Indeed, thiis entry

is -l/pt. Thus it is negative. Consequently, the increase of xt is bounded above by

e. Hence, termination on a secondary ray can not occur.

-24-
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Summarizing, we have proven that once an x-variable has become basic, it will stay

basic until termination occurs. Since there are only n x-variables, the algorithm

terminates after at most n + 1 pivots. Since termination on a ray is ruled out, a

desired solution to the LCP(3) will be obtained. This establishes the theorem.

Remark. i) As in Theorem 1, no nondegeneracy assumption is needed to prove Theorem 4.

ii) The matrix

(1 2)

satisfies the assumptions of Theorem 4 (with p _ (1 ,1 )T). But it is not P.

Theorem 4 may be considered an extension of Theorem 1 to the case of a non-P matrix.

Proofs to both theorems are based on the same key idea that an x-variable once becomes

basic, stays basic. At present, it is not clear to us what class of matrices M (besides

those considered in the last two sections) will produce an easily calculable vector p

satisfying the required properties. We leave this as an open question for further

investigation.

It is interesting to contrast Theorem 4 with the worst-case studies of (12, 221. In

these earlier studies, examples have been presented which demonstrate that Lemke's method

can require an exponential number of pivots. On the other hand, Theorem 4 guarantees that

for certain class of problems, the polynomial-time complexity of Lemke's method can be

established. Although a complete knowledge of such problems is not yet available, the

examples in Sections 3 and 4, together with those that are previously known should have

*. amply demonstrated that the class is non-void and indeed contains some very interesting

applications of the LCP.
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